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ABSTRACT In a steady-state lattice of interacting enzyme
molecules that have a multicycle kinetic diagram, a cooperative
or phase transition may involve not only the conventional sud-
den change in the relative importance of the different states of
a molecule but also a sudden change in the dominant cycles of
the diagram. The latter effect implies a sudden switch in the
dominant biochemistry (e.g., a sudden onset of active transport).
An explicit example is discussed.

This is the tenth paper in a series on interaction or cooperative
effects between enzyme molecules at steady state. Most atten-
tion so far has been devoted to lattices of enzyme molecules with
two-state cycles. From the point of view of statistical physics,
this work amounts to an extension of the well-known two-state
equilibrium Ising problem to steady states arbitrarily far from
equilibrium. Currently we are examining systems with three-
state cycles (with L. Stein; to be published) and with four states
and three cycles. In both cases interesting and novel features
are encountered. The latter work is the subject of the present
paper.

Phase transitions in Ising and related steady-state systems
(1-4) conventionally involve a sudden switch from the domi-
nance of one of two discrete states to the other. But some
steady-state- enzyme-lattice systems may also exhibit a
higher-order type of transition, not possible at equilibrium. This
may occur if the kinetic diagram of the individual enzyme
molecules of the lattice contains more than one cycle. In such
cases the phase transition may bring about not only a sudden
change in the dominant state or states but also a sudden change
in the dominant cycle or cycles. Thus the predominant
steady-state biochemistry taking place in the lattice may switch
precipitously as a result of the phase transition. In the numerical
example below, there is active transport of a ligand L (driven
by ATP, say) after a phase transition but not before.
The simplest diagram that has more than one cycle and that

allows coupling between two different thermodynamic forces
is a diagram with four states and three cycles, as shown in Fig.
1A. We use this diagram here because our very limited purpose
in this paper is simply to illustrate, with one hypothetical ex-
ample, the general phenomenon described in the preceding
paragraph. It remains to be seen, in'the future, whether any
natural or artificial steady-state enzyme-lattice systems exhibit
this type of behavior.
Our discussion above has been in terms of a sharp phase

transition. Of course a cooperative but nonprecipitous transition
between dominant cycles would also be of considerable interest;
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FIG. 1. (A) Four-state kinetic diagram for possible active
transport of ligand L by ATP. (B) The three cycles that belong to this
diagram. See text.

bacteriorhodopsin is a possible candidate.t A gradual transition
could occur either in a lattice with subcritical interaction free
energies (see below) or in a small aggregate or complex (e.g.,
of from two to six subunits). In the latter (finite) case, sharp
behavior would not be observed no matter how strong the in-
teractions.
The model and analytical properties for j 0= 0

Fig. 1A shows the four-state kinetic diagram we use (5, 6).
There are three cycles (Fig. 1B); we take the counterclockwise
direction as positive in all cycles. Without specifying the details
of a biochemical mechanism, let us suppose for concreteness
that in the positive direction in each case: cycle A transports a
ligand L across a membrane from inside to outside; cycle B
hydrolyzes ATP; and cycle C does both of these. Our primary
interest is in cases where the cycle flux 1A and thermodynamic
force XA (for L) are both negative, JB and XB (for ATP) are both
positive, and JC and XA + XB (the net force in cycle C) are also
both positive. Thus, the "downhill" direction for transport of
L is out - in (negative direction), but the ATP force XB is large
enough to overcome the negative XA in cycle C so that L is
transported "uphill" (in out) in cycle C (5, 6).
The operational (total) flux in L is J' = JA + JC, while the

operational flux in ATP is J2 = JB + Jc (5, 6). If J' is positive,
there is net flux of L in - out, against its electrochemical po-
tential gradient (i.e., there is active transport of L by ATP).
We use the Bragg-Williams (or mean field) approximation

to take care of nearest-neighbor interactions in the lattice (7).
The rate constants chosen are shown in Fig. 2. Here a < 1,1 is
very small, x is proportional to the ATP concentration (which
can be varied), and y is an interaction parameter. Unity is used
as a reference rate constant. To keep the mathematics as simple
as possible, we assume one kind of interaction only: w44, the free
energy of interaction between neighboring molecules both in

t Hess, B., Korenstein, R. & Kuschmitz, D. (1978) Sixth International
Biophysics Congress, Kyoto, Japan, 177 (abstr.).
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only (for a given a); call this function F(p4). If we then replace
xy wherever it occurs in Eqs. 4 and 5 by F(p4), the Js and the
other ps are all functions of p4 that are independent of the value
of s. Next, from Eq. 6, we see that the maximum value of p4(X

0x) is a/b. The half-maximum is p- a/2b. One can then
show (details omitted) that

F(p* + A) F(p- A)=F(p*)2
X(p* + A) X(p-) =X(p)2

P(p; + A) + P(p; - A) = 2P(p;),
4

FIG. 2. Rate constants of the diagram, used in the example. See
text.

state 4, is taken as zero or negative (relative to all other pair
interactions). We define

y - SP4, s exp[(z/2)(-W44/kT)] > 1, [1]
where p4 is the probability that any molecule in the lattice is
in state 4, z is the nearest-neighbor number of the lattice, k is
the Boltzmann constant, and T is absolute temperature. The
factors y, y' , and y2 in Fig. 2 then follow from the rather ar-
bitrary choicesf24 = 1/2 and f43 = 0 in equation 40 of ref. 7. This
model has the virtue of simplicity but the efficiency of free
energy transduction (-JX,/J2X2) is small. More realistic
models would include other interactions besides those of type
44.

Using the diagram method (5) and Fig. 2, it is easy to write
each of the four steady-state pi as a sum of eight terms divided
by 2, where z is the sum of all 32 terms. Also, the cycle fluxes
and forces (5) are

JA = (y - 1)(1+ ay-1)/
AB = (XY-CYaf2y)(1 + aY)l 2

Jc = (xya2 -2Y)/
eXl/kT = a3, eX2/kT = X/a/2.

[2]
[3]

The forces are independent of s. Because x and a are of order
unity (see below) and eX2/kT (ATP) is of order 1010, 0 is of order
10-5. In our explicit derivation of the pi and the fluxes, below,
we therefore take /3 = 0 for simplicity. (Incidentally, in the
analysis below, the factor y2 in the rate constant fly2 in Fig. 2
is e4 = 54.6 at the critical point.)
With ,B = 0, we find (5)

pi = (a + xya)/ ,P2 = a/2;
p3 = [a + xy(l + a)]/ , p4 = axy/2

I = 3a + xyb
a -- 1 + a +a2,b -- (1 +a)(2 +a),ysP4 [4]

and

JA = (a - 1)/V, JB = xy(l + a)/l, Jc = xya2/
J1= JA + IC, 12 = B + IC- [5]

Note that J2 = p4. The ps and Js are regarded here as functions
of x (or ATP concentration), for specified s and a.

In numerical work, we use
x = 3ap4/(a -bp4)Y, [6]

which follows from the equation for p4 above, to obtain X(p4)
(rather than vice versa). The other quantities in Eqs. 4 and 5 are
then calculated at each x value.

There are helpful symmetry properties that are not difficult
to prove. First, we note from Eq. 6 that xy is a function of p4

[7]
where P represents here any one of the Js or ps.

There is a phase transition for large enough-w44/kT. The
critical properties follow from

aln x/Zp4 = 0, &2ln x/bp42 = 0
and Eqs. 7. We find

p4(C) = p4 = a/2b, In s, = 4b/a, I, = 6a

Yc = e2, xc = (3a/b)e2, XcYc = 3a/b
pl(C) = ('/6) + (a/2b), p2(c) = 1/6

p3(c) = (1/6) + [(1+ a)/2b]
JA(C) = (a3 -1)/6a, JB(C) = (1 + a)/2b

Jc(c) = a2/2b, J2(c) = a/2b

jh(c) = (a3 + 5a2 -a - 2)/6b.

[8]

[9]
The limiting values of the ps and Js as x - 0 and x -c are

easy to deduce from Eqs. 4 and 5; also these two limits are re-
lated by symmetry. For example,

J, -[(a- 1)/3]+ [(2- a)x/9]+. (x -0)
J2=p4 X/3+ . .. (x-O)

[10]J1 o /'b, J2 = p4 - a/b (x - c).
These limits are independent of s.
Numerical example (with , = 0)
In this example, we choose a so that jP(c) = 0. This value of a
is 0.68740. The critical value of s is then sc = 4438.0. If we take
z = 6 (two-dimensional hexagonal lattice) in Eq. 1, the critical
value of-w44/kT is 2.80. Fig. 3 shows the four steady-state ps
as functions of x for s = sc. That is, these are all critical curves.
The critical value of x is xc = 0.19338. Also, p4(C) = p4 =
0.23815. Before the transition, p4 is small because x is small. But
state 4 has the largest probability just after the transition because
of the attractive 44 interactions. After the transition, P2 is small
because the rate constant xy out of state 2 (Fig. 2) is relatively
large.

Fig. 4 (solid curves) shows the five critical (s = sc) flux curves
(recall that 12 = p4). With the choice J,(c) = 0 (see above), the
flux JI (transport of L) is negative ("downhill", out o in) before

0.5 P4
A

x

FIG. 3. The four steady-state state probabilities as functions of
x, in a numerical example. See text.
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FIG. 4. The five critical flux curves, in a numerical example (si.
= 4438). Dotted curves give J. (= p4) for s = 2000 and 8000. See
text.

the transition but is positive ("uphill") after the transition. That
is, as the ATP concentration is increased, the onset of active
transport of L by ATP is sudden; the active transport exists after
the transition but not before.

Cycle A is the dominant cycle at small x, while cycles B and
C dominate at large x. This is true even in the absence of in-
teractions (s = 1), but the change in cycle status occurs at rel-
atively small values of x and is cooperative if s is large. Thus the
midpoint of the transition (e.g., J2 = p4 = pi and JI = 0) occurs
at x = 0.168 for s = 8000, at x = 0.193 for s = sC = 4438, at x

= 0.234 for s = 2000, and at x = 1.429 for s = 1. Incidentally,
these are all values of x(p*) (which depends on s).
The dotted J2 (= p4) curves in Fig. 4 illustrate the effect of

varying s. Exactly analogous curves obtain for the other ps and
Js. The transition is subcritical for s = 2000 (or for any s < sj
A loop is found in the s = 8000 case (or for any s > sj). Because
of the symmetry of this model (Ecs. 7), the vertical cut (stable
path) across the loop occurs at X(p4) = 0.168. [In fact, all of the
curves in Figs. 3 and 4 would exhibit symmetry about the ap-
propriate x(p') value if we used In x rather than x for the ab-
scissa. I

In summary, in this steady-state model with a multicycle
diagram, the phase transition involves not only a sudden change
in the relative importance of the different states (Fig. 3) but also
a sudden change in the relative importance of the different
cycles (Fig. 4). The latter effect implies, in turn, a sudden switch
in the dominant biochemistry (here, the onset of active trans-
port).
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